Albero: A Visual Analytics Approach for Probabilistic Weather Forecasting

نویسندگان

  • Alexandra Diehl
  • Leandro Pelorosso
  • Claudio Delrieux
  • Kresimir Matkovic
  • Juan Ruiz
  • Eduard Gröller
  • Stefan Bruckner
چکیده

Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision-making and process-quality measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualizing Uncertainty for Probabilistic Weather Forecasting based on Reforecast Analogs

Numerical weather forecasts are prone to uncertainty coming from inaccuracies in the initial and boundary conditions and lack of precision in numerical models. Ensemble of forecasts partially addresses these problems by considering several runs of the numerical model. Each forecast is generated with different initial and boundary conditions and different model configurations [GR05]. The ensembl...

متن کامل

Probabilistic Solar Forecasting Using Quantile Regression Models

In this work, we assess the performance of three probabilistic models for intra-day solar forecasting. More precisely, a linear quantile regression method is used to build three models for generating 1 h–6 h-ahead probabilistic forecasts. Our approach is applied to forecasting solar irradiance at a site experiencing highly variable sky conditions using the historical ground observations of sola...

متن کامل

Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions

The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...

متن کامل

Probabilistic Weather Forecasting in R

Abstract This article describes two R packages for probabilistic weather forecasting, ensembleBMA, which offers ensemble postprocessing via Bayesian model averaging (BMA), and ProbForecastGOP, which implements the geostatistical output perturbation (GOP) method. BMA forecasting models use mixture distributions, in which each component corresponds to an ensemble member, and the form of the compo...

متن کامل

Artificial Neural Networks’ Application in Weather Forecasting – Using RapidMiner

Weather forecasting is a crucial phenomenon in today’s world. Though weather prediction is completely automated, with the help of tools like Weather Research & Forecasting (WRF), Advanced Research WRF (ARW), Weather Processing System (WPS), it’s a ever challenging and a topic of interest because prediction is not an accurate always. Weather forecasting is a continuous, high dimensional, dynamic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017